JX-2R-17 Model

Thermal Printer Mechanism Specification

Tel: 86-17372119792

E-mail:qiji-sales002@@hotmailcom.com

Web site:www.jprinter.com

1. Brief introduction

1.1 Thermal printer mechanism

It is a small size, wide operating voltage (3.5~8.5V), high efficiency thermal printer mechanism. The unique easy loading makes it become an ultra compact, reliable and cost-effective printer mechanism.

1.2 Characteristics

- ◆ Easy loading paper
- ◆ Small size, light weight
- ◆Resistance high temperature plastic frame, metal gear cover
- ◆ Print speed (max): 90 mm / s (at 8.5 V voltage of motor, 2-2 phase drive)
- ◆ Wide operating voltage (3.5 V-8.5V)
- ◆ High accuracy (8 dots / mm)
- ◆ Wear life: more than 50 km
- ◆ Low noise: brushless magnetic incentive step motor; high wear resistance, composed of resistant to high / low temperature special engineering plastics gears, makes it has very low noise.

Apply to: ■ Portable printer/terminal

- EFT
- Cash register
- POS
- Weight machines
- Medical equipment

1.3 Description

The manual describes electrical characteristics and mechanical properties of JX-2R-17. That is operation principle, basic parameters, the scope of application, peripheral interface definitions and structure size. The contents of this document are subject to change without notice. Please contact us for the latest information. Jingxin Technology will not bear any responsibility for any damage or injuries arising from use of this product that is not in accordance with the specifications and the notes provided below.

2. General Specifications

2. General Specifications	
Item	Specifications
Print method	Thermal dot line printing
Effective printing width (mm)	48
Heater resolution (dot/mm)	8
Printing Dots of per line	384dots
Paper width (mm)	58
Dot pitch (mm)	0.125mm
Dot size	0.125mm x 0.12mm
Printing speed(MAX)	90mm/s (at 8.5 V voltage of motor)
Thermal head temperature detection	Via thermistor
Paper detection	Via photo interrupter
Head working voltage(V)	3.13~8.5
Logic voltage(V)	2.7~5.25
Motor voltage	3.5~8.5
Operating temperature	+0°C~50°C
Operating humidity	20%~85%RH
store temperature	-20℃~60℃
store humidity	5%~95%RH
Machine noise	<60dB
Platen open-close times	>5000 times
Thermal paper traction force	≥50g
Thermal paper grasp brake force	≥80g
Wear life	>50km
Electric life	One hundred-million pulses (under our standard printing conditions.)
Mass(g)	30g
Outline dimension(D x W x H)	67.2±0.2mm * 18.1±0.2mm *31.8±0.2mm
-	•

3. Thermal head specification

3.1 Rated parameters

Heating points	384dots/line
Dot pitch	0.125mm
Dot size	0.125mm x 0.12mm
printing width	48 ±0.2mm
Paper width	54 mm
average resistance	176Ω±4%
Working voltage	3.13V-8.5V
Pulse life	10^8 pulse
Machine wear life	50km
Life test condition	25℃
The time of heating not less than	12.5%.

Item	Symbol	Maximum Conditions	Condition
Printing cycle	S.L.T	1.25ms/line	Tsub=25℃
Printing energy	E0	0.20 mJ/dot	S.L.T=1.25msec
Printing voltage	VH	8.5V	Normally voltage is 7.2 V, the
1 Tilling Voltage	VIII	0.5 V	peak of the VH <9.5V
Logic voltage	Vdd	7V	Including peak voltage of Vdd
Logic input voltage	Vin	-0.5V~Vdd+0.5V	
Substrate temperature	Та	65℃	Thermistor temperature
printing dots		64 dots	

3.3 Condition for electrical actions

item		symbol	electric parameter	Conditions	
Power consumption		Ро	0.24W/dot	Rav=176Ω,Vdd=5V, concurrent applied	
Supply volt	age	VH	7.2V	dot number with	
Print cyc	le	S.L.T	1.25ms/line	64dots	
Fnorm	5℃		0.16mJ/dot(0.67ms)		
Energy	25 ℃	Eo (Ton)	0.13mJ/dot(0.54ms)	Heating 64 dots at the same time	
on	45 ℃		0.11mJ/dot(0.46ms)		
Current consu	mption	lo	2.4A		

3.4 Calculation formula

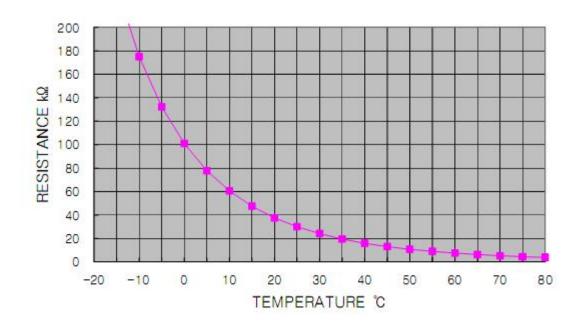
The relation of the applied voltage and the electric power application time (Ton) is calculated with calculation formula as shown bellow:

$$P_0 = I_0^2 \times Rav = \frac{VH^2 \times Rav}{(Rcom \times N + Rav + Ric + Rlead)^2}$$

$$\therefore Ton = \frac{E_0}{P_0}$$

$$\therefore P_0 = \frac{E_0}{Ton}$$

$$VH = \sqrt{p_0 \div Rav} \times (Rcom \times N + Rav + Ric + Rlead)$$


Rav:	average resistance value	176Ω
N:	simultaneous printing dot	64dot
Rcom:	common resistance	0.05Ω
Ric:	drive-on resistance	6Ω
Rlead:	lead resistance	10Ω

3.5 Thermistor characteristics

Calculation formula: $R_X = R25 \times EXP[B \times (\frac{1}{T_X} - \frac{1}{T25})]$ (T: absolute temperature)

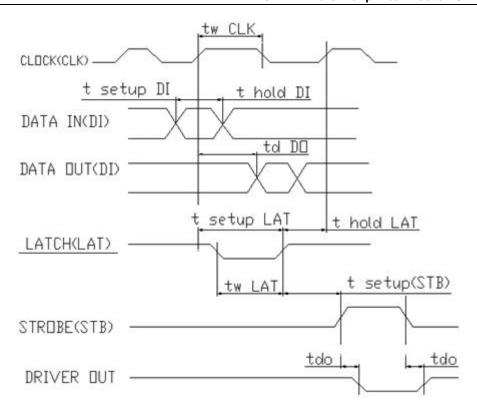
B constant: 3950K±2%

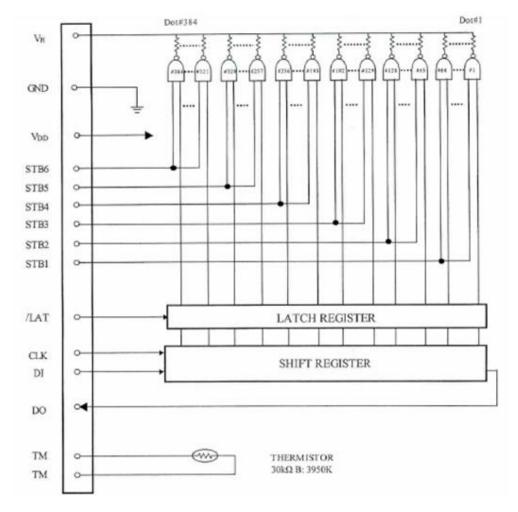
Resistance value R25: $30K\Omega\pm5\%$ at 25° C Tx operating temperature: -20° C $\sim+80^{\circ}$ C T25 1pulse width operating temperature: 25° C

Table of thermistor temperature

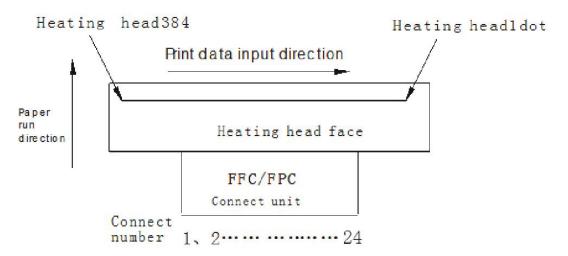
Temp.	Resistanc	Temp.	Resistanc	Tomp	Resistanc	Tomp	Resistanc
(℃)	е	(°C)	е	Temp. (°C)	е	Temp. (°C)	е
	(ΚΩ)		(ΚΩ)	(0)	(ΚΩ)	(0)	(ΚΩ)
-20	269	10	60	40	15.9	70	5.21
-15	208	15	47.1	45	13.1	75	4.4
-10	178	20	37.5	50	10.8		
-5	124	25	30.0	55	8.91		
0	100	30	24.2	60	7.41		
5	78	35	19.6	65	6.2		

3.6 Electric parameter (25±10℃)


Item	Symbol	Min.	Typical	Max.	Unit	Conditions
Printing voltage	VH	3.13	7.2	8.5	V	Conditions
					V	
Logic voltage	Vdd	2.7	5.0	5.25	+ -	
Logic current	Idd			54	m A	fDI=fclk/2
Input voltage(high)	VIH	0.8Vdd		Vdd	V	STB,DI,LAT,CLK
Input voltage(low)	VIL	0		0.3Vdd	V	
Latch input current(high)				3.0		
Heating input current(high)]			30		
Clock input current(high)	- IIH			3.0	μA	
Data input current(high)				0.5		VIH=5V
Latch input current(low)				-3.0		
Heating input current (low)				-0.5		
Clock input current (low)	- IIL			-3.0	μA	
Data input current (low)				-0.5		VIL=0V
Data output voltage(high)	VDOH	4.45			V	Open ,Vdd=4.5V
Data output voltage (low)	VDOL			0.05	V	
Output voltage	VOL		(1.0)		V	Driver output


3.7 Time Characteristic (25±10℃)

			Speed			
Parameter	Symbol	Mi	Typic	Max	Unit	conditions
		n.	al			


JX-2R-17 thermal printer mechanism specification

			•		
			 8	MHz	3≤Vdd≤5.25
Clock frequency	fCLK		 5	MHz	2.7≤Vdd<3
Clock pulse width	twCLK	3	 	ns	
Data setup time	testup DI	3 0	 	ns	Refer to the timing chart
Data hold time	thold DI	3	 	ns	
Data out delay	44 DO		 90	ns	3≤Vdd≤5.25
time	td DO		 130	ns	2.7≤Vdd<3
Latch pulse width	tw LAT	1 0 0	 	ns	
Latch setup time	testup LAT	1 0 0	 	ns	
Latch hold time	thold LAT	5 0	 	ns	
STB setup time	testup STB	3 0 0	 	ns	
Output delay	tdo		 30	μs	5V(Vdd)
time			 36	μs	2.7V(Vdd)

STB No.	Dot No.	Dots/STB
1	1 to 64	64
2	65 to 128	64
3	129 to 192	64
4	193 to 256	64
5	257 to 320	64
6	321 to 384	64

3.8 Attentions

(a) Thermal printer head driving voltage On/Off sequence:

On sequence: First supply logic voltage (VDD), and then supply thermal head driving voltage (VH).

Off sequence: First close thermal head driving voltage (VH), and then close logic voltage (VDD).

- (b) When the printer mechanism is not on printing state, please cut off thermal head voltage (VH).
- (c) During thermal head driving voltage on/off or no-operation, please keep strobe heat signal (STB) is on no-operation state.
- (d) After printing, please cut down thermal head voltage decreasing to the ground level (0V), and then keep on next print state.
- (e) Heating control signal requirements: please make sure that heating control signal is off when printer mechanism voltage is on/off; and power supplier VH, logic VDD voltage should not more than rated value, especially when the STB of thermal head is changing or is on/off state; please make sure the voltage as follow:

VH $0V\sim +8.5V$ Vdd $0V\sim +7V$ Other signal GND-0.5V \sim Vdd+0.5V

(f) The driver ICs of thermal head shall be anti-electrostatic in order to prevent electrostatic destruction. Do not touch thermal head connector and FPC by

naked hands.

- (g) Please pay more attention to thermal head. Do not clean or wipe the head face with rigid material, and prevent mechanical shock, because abrasion-resistant coating of heat elements is brittle in property.
- (h) Even if lower printing quality, the numbers of dots pulsed simultaneously is also not exceed 192 dots. General speaking, if the numbers of dots pulsed simultaneously is larger than 64 dots, the current of thermal head will be increasing that causes printing unequal, and the current shall be less than 4 ampere.

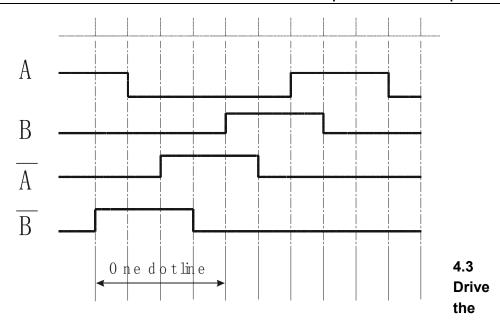
4. Stepping motor

Stepper motor for every step forward, the paper advances 0.03125mm.

4.1 Stepping Motor Parameter

Item	Specification	Term
Rated voltage	3.5~8.5V	
Phase	2phase	
Step angle	9° by 1-2phase excitation	
Amount of paper feed	0.03125mm	
Phase resistance	10Ω±10%	20℃
Phase current	0.357A	
Drive method	1-2 phase excitation of the bipolar	

4.2 Stepping Motor Phase


JX-2R-17 stepping motor with the 1-2 phases excitation of the bipolar.

As shown bellow:

Position	STEP1	STEP2	STEP3	STEP4
А	+	-	-	-
В	-	-	-	-
\overline{A}	-	-	+	+
\overline{B}	+	+	+	-

Driving procedures of the stepping motor (1-2phase)

Motor shift in the CCW (seen from motor gear side)

stepping motor

We recommend use the PWM mode in the stepping motor drives, such as the L3967,LB1836 etc driver chips. For different motor speed using different drive current. This will effectively reduce the stepper motor fever, and effectively reduce the noise.

The following table gives the maximum paper feed speed vs. the step motor voltage(at 25°C).

In order to avoid stepper motor overheat, it is strongly advised to respect the maximum ON/OFF duty cycle as indicated above. Note that the maximum period for the ON time is 30 seconds (when the duty cycle is not 100%).

Operating voltage	Drive Frequency of the motor	Duty cycle (%)
3.5DCV	500PPS	92
3.6DCV	550PPS	90
3.7DCV	580PPS	89
3.8DCV	600PPS	88
4.0DCV	650PPS	87
4.2DCV	700PPS	86
4.3DCV	750PPS	85
4.4DCV	800PPS	84
4.5DCV	850PPS	83
4.6DCV	900PPS	82
4.7DCV	950PPS	81
4.8DCV	960PPS	80
4.9DCV	970PPS	79
5.0DCV	980PPS	78

JX-2R-17 thermal printer mechanism specification

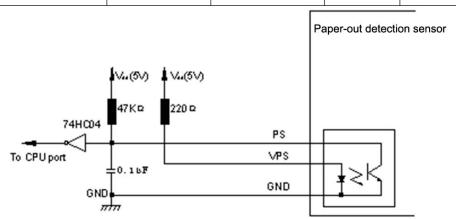
5.1DCV	990PPS	77
5.2DCV	1000PPS	76
5.5DCV	1050PPS	75
6.2DCV	1100PPS	60
6.5DCV	1150PPS	55
7.8DCV	1200PPS	45
8.5DCV	1280PPS	30

5. Paper detector

The printer has a built-in paper detector (reflection type photo interrupter) to detect whether paper is present or not.

An external circuit should be designed so that it detects output from the paper detector and does not activate the thermal head and motor when there is no paper. Doing not so may cause damage to the thermal head or platen roller or shorten the life of the head significantly. If the motor is drove when it is out-of paper, a load input on the reduction gear and the life of the gear may be shortened.

5.1 Absolute Maximum Rating (T= 25°C)


	Item	Code	Number	Unit
	Forward current	IF	50	mA
Input	Reversed current	VR	5	V
	Loss of capacity	Р	70	mW
	Collector-emitter voltage	VCEO	20	V
O t t	Emitter-collector voltage	ECO	5	V
Output	Collector current	IC	20	mA
	Loss of collector	PC	70	mW

5.2 Photoelectrical Characteristics (Ta = 25°C)

Item		Item Item Condition		Min. value	Ref. value	Max. valu e	Uni t
Input	Forward current	VF	IF=10mA	1.0	1.2	1.6	V
Input	Reversed current	IR	VR=5V			10	μA
Outp	Collector-emitter	BVCE0	IC=0.5mA	20			V

JX-2R-17 thermal printer mechanism specification

ut	voltage						
	Emitter-collector voltage	BVECO	IE=0.1mA	5			
	Collector dark current	ICEO	VCE=10V IF=0mA			200	nA
	Collector-emitter saturated voltage	VCE(SAT)	IC=2mA Ee=1mW/c m^2			0.4	V
Cou pling	Sensor current	Ic	VCE=5V IF=10mA	150		600	μА
char acter istic	Leakage current	ILEAK	IF=10mA VCE=5V			1	μA
	ascend/decline time	Tr/Tf	VCE=5V IF=1mA RL=100Ω		5/5		μs

PS signal will be high level when run out of paper

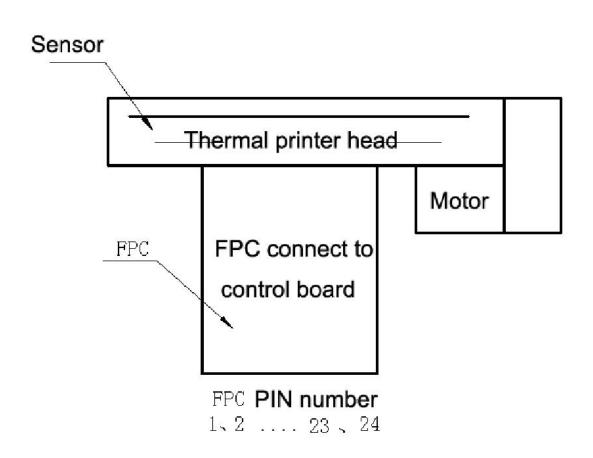
The biggest parameter values $(25 \, ^{\circ}\text{C})$

Item		Code	numerical value	Unit
	Forward Current	IF	50	mA
In nut	Forward Current Peak	IFP	1	А
In-put	Reverse Voltage	VR	5	V
	The Lowest Power	Pd	75	mW
Out put	Collector-to-emitter Voltage	VCEO	30	V
Out-put	Emitter-to-collector Voltage	VECO	5	V

JX-2R-17 thermal printer mechanism specification

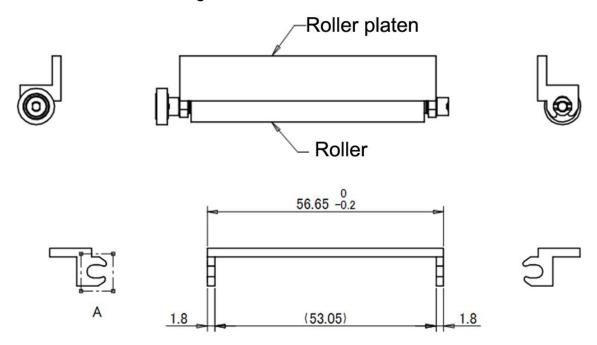
Collector Curre	nt IC	50	mA
Collector Minimum F	Power PC	100	mW

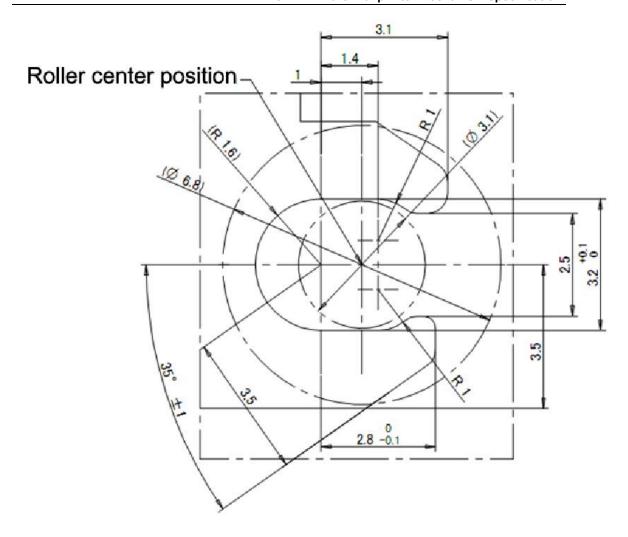
Photoelectric parameters (25 °C)

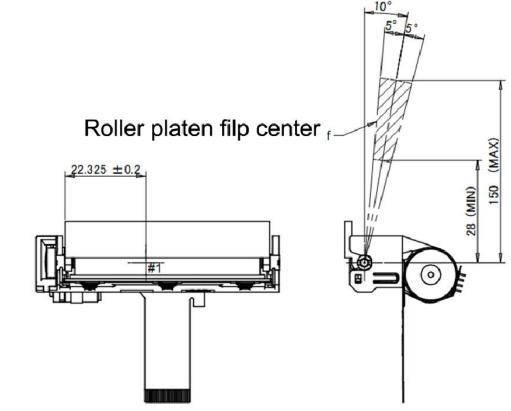

	Item	Code	Conditio	Nui	Numerical value		Unit
In-put	Forward Current	VF	IF=20m A		1.2	1.6	V
port	Reverse Voltage	IR	VR=5V			10	μÀ
	Collector-to-emitter breakdown voltage	BVCE0	IC=0.5m A	20			V
Out-put	Emitter to collector breakdown voltage	BVEC O	IE=0.1m A	5			V
port	Collector dark current	ICEO	VCE=20 V Ee=0m W/cm2			10 0	nA
	Collector-to-emitter saturation voltage	VCE(S AT)	IC=0.5m A Ee=10m W/cm2			0.4	V
	Sensor current	Ic	VCE=5V IF=4.0m A	0.1 8		0.3	mÀ
Coupli ng charact eristics	Leakage current	ILEAK	IF=10m A VCE=5V Reflectiv e surfaces			1	μÀ
	Rise / fall time	Tr/Tf	Vcc=5V Ic=0.1m A RL=100 0 Ω		20/ 20		μs

6. PIN layout for connector

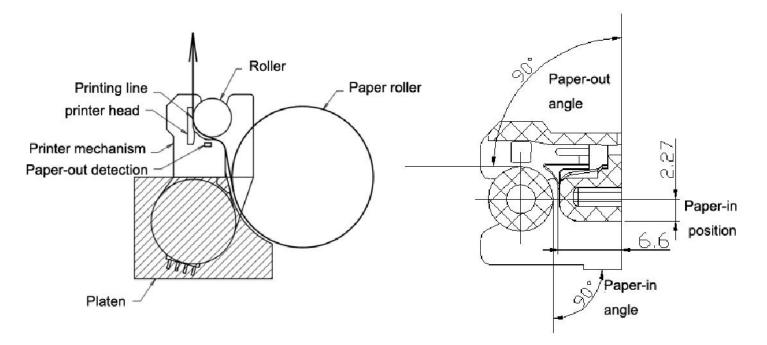
	or intragout for commotion						
N O.	Sign al	Description	NO	Signal	Description		
1	PS	Paper-out detection sensor collector	13	DST	Strobe		
2	Gps	Paper-out detection sensor cathode / emitter	14	ТН	Thermistor		
3	Vps	Paper detection sensor anode	15	GND	GND		
4	Vp	Printer head drive power supplier	16	GND	GND		

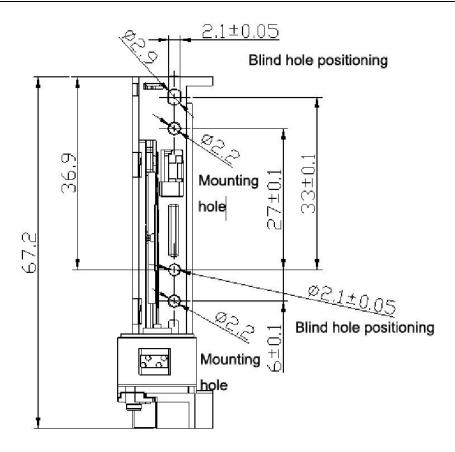

JX-2R-17 thermal printer mechanism specification

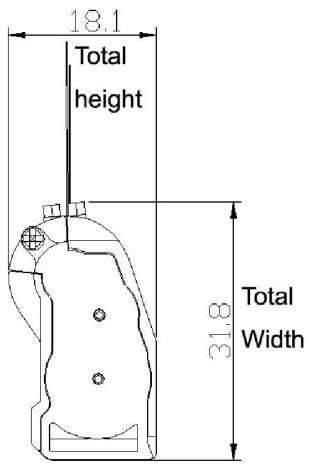

5	Vp	Printer head drive power supplier	17	GND	GND
6	Vp	Printer head drive power supplier	18	LAT	Print data latch (memory storage) signal
7	DI	Print data in-put	19	Vp	Printer head drive power supplier
8	CLK	Print clock in-put	20	Vp	Printer head drive power supplier
9	GND	GND	21	Α	Phase A
1 0	GND	GND	22	Ā	Phase Ā
11	GND	GND	23	В	Phase B
1 2	Vdd	Logic power supplier port	24	B	Phase B

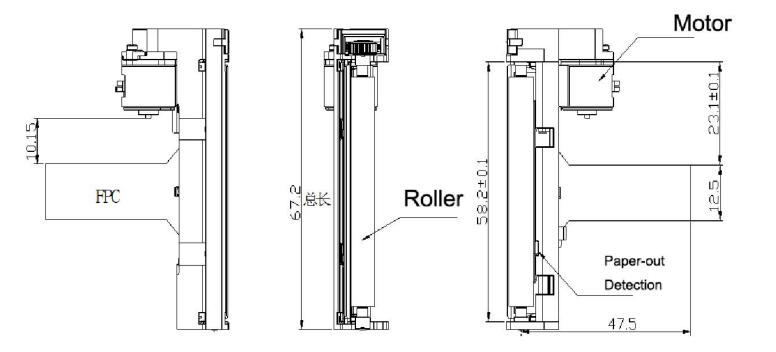


7. Printer mechanism design reference

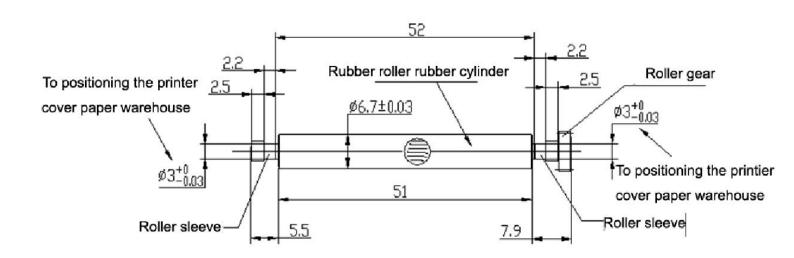

7.1 roller frame structure design

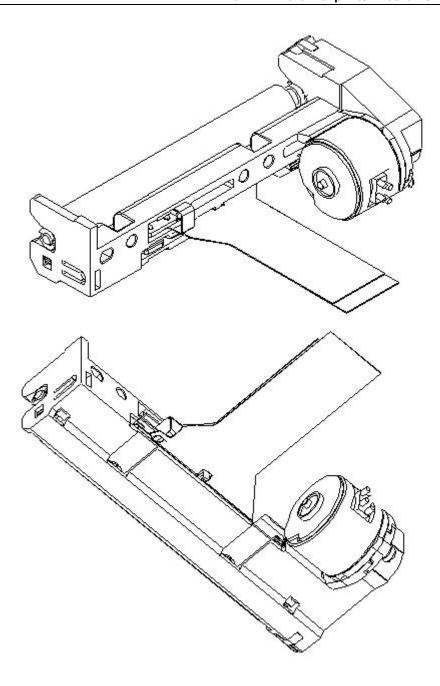





7.3 Paper tube position design




7.4 The printer mechanism structure outline drawing and its size



8 Printer Mechanism Application Attentions

- 8.1 The specific structure of the printer mechanism references to the formal samples from Xiamen Jingxin science and technology co.,LTD.
- 8.2 Before test, it is necessary that makes sure that the printer mechanism type and specification is correlation with that required and identified former.
- 8.3 Many attention shall be paid during inspection, repairing and assembling of the printer mechanism. Anti-electrostatic measures shall also be taken in such as working platform, assembly line, turnover box and manufacturer respects and the like.
- 8.4 The printer mechanism connecting Pin of FPC can't be touched by naked hands. When connected with control circuit, it will be kept relax status preventing extra

- tension force. Before pullout and inserting into FPC, makes sure that cut down completely the control circuit power. The numbers of pullout and inserting must be less than ten times.
- 8.5 As for the storage of printer mechanism, more attention shall be paid to water-proof, moisture-proof, and sun-proof and corrosive chemical gases proof. In case of condensation, please first cut off the power of printer mechanism, and restart the printer mechanism after blow-dry.
- 8.6 Do not print without paper. Forcing to printing without paper will cause platen rubber rubbing with the thermal head heating elements, which will affect and reduce the longevity of thermal head.
- 8.7 Other operation precaution is reference to the operation precaution of thermal line printer wrote by Xiamen Jingxin science and technology Co., LTD
- 8.8 It is recommended that customers use higher quality thermal paper for printing. Low quality thermal paper will cause low print quality and increase the wear of thermal head, even the shortage life of thermal head extremely.

9 Quality Assurances and Service

Our company makes sure that the printer mechanism will give the superior performance In the case of normal use and maintenance and that the printer mechanism is guaranteed for one year.

9.1 Service

- 9.1.1 Maintenance must be made by professional maintainer.
- 9.1.2 During maintenance, do not change the printer mechanism internal parts unauthorized. The problems caused by customers' improper repairs and changing the parts are not covered by this warranties policy.

9.2 Guarantee

Warranty: The printer mechanism is guaranteed one year from the shipping date; even if within the warranty date, the cases below are not covered and the repairing fee is paid by customers self:

- A. Damage caused by customers' misuse.
- B. Damage caused by repairing and transforming self.
- C. Damage caused by the improper use conditions not according to the specification requirements.
- D. Damage caused by force majored.